Zero-sum problems and coverings by proper cosets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-sum problems and coverings by proper cosets

Let G be a finite Abelian group and D(G) its Davenport constant, which is defined as the maximal length of a minimal zero-sum sequence in G. We show that various problems on zero-sum sequences in G may be interpreted as certain covering problems. Using this approach we study the Davenport constant of groups of the form (Z/nZ)r , with n ≥ 2 and r ∈ N. For elementary p-groups G, we derive a resul...

متن کامل

Computing Proper Equilibria of Zero-Sum Games

We show that a proper equilibrium of a matrix game can be found in polynomial time by solving a linear (in the number of pure strategies of the two players) number of linear programs of roughly the same dimensions as the standard linear programs describing the Nash equilibria of the game.

متن کامل

On Zero - Sum Problems

Let G be an additive abelian group. The zero-sum problem for G asks for the least positive integer k such that for any a1, · · · , ak ∈ G there is an I ⊆ {1, · · · , k} of required cardinality satisfying ∑ i∈I ai = 0. In this talk we will introduce the famous theorem of P. Erdős, A. Ginzburg and A. Ziv (for G = Zn), and recent results of L. Rónya on the Kemnitz conjecture concerning the group Z...

متن کامل

Contributions to zero-sum problems

A prototype of zero–sum theorems, the well–known theorem of Erdős, Ginzburg and Ziv says that for any positive integer n, any sequence a1, a2, · · · , a2n−1 of 2n − 1 integers has a subsequence of n elements whose sum is 0 modulo n. Appropriate generalizations of the question, especially that for (Z/pZ), generated a lot of research and still have challenging open questions. Here we propose a ne...

متن کامل

Inverse zero-sum problems and algebraic invariants

— In this article, we study the maximal cross number of long zero-sumfree sequences in a finite Abelian group. Regarding this inverse-type problem, we formulate a general conjecture and prove, among other results, that this conjecture holds true for finite cyclic groups, finite Abelian p-groups and for finite Abelian groups of rank two. Also, the results obtained here enable us to improve, via ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2003

ISSN: 0195-6698

DOI: 10.1016/s0195-6698(03)00033-7